Statistical Inference of Motion in the Invisible
نویسندگان
چکیده
This paper focuses on the unexplored problem of inferring motion of objects that are invisible to all cameras in a multiple camera setup. As opposed to methods for learning relationships between disjoint cameras, we take the next step to actually infer the exact spatiotemporal behavior of objects while they are invisible. Given object trajectories within disjoint cameras’ FOVs (field-ofview), we introduce constraints on the behavior of objects as they travel through the unobservable areas that lie in between. These constraints include vehicle following (the trajectories of vehicles adjacent to each other at entry and exit are time-shifted relative to each other), collision avoidance (no two trajectories pass through the same location at the same time) and temporal smoothness (restricts the allowable movements of vehicles based on physical limits). The constraints are embedded in a generalized, global cost function for the entire scene, incorporating influences of all objects, followed by a bounded minimization using an interior point algorithm, to obtain trajectory representations of objects that define their exact dynamics and behavior while invisible. Finally, a statistical representation of motion in the entire scene is estimated to obtain a probabilistic distribution representing individual behaviors, such as turns, constant velocity motion, deceleration to a stop, and acceleration from rest for evaluation and visualization. Experiments are reported on real world videos from multiple disjoint cameras in NGSIM data set, and qualitative as well as quantitative analysis confirms the validity of our approach.
منابع مشابه
Review of the Applications of Exponential Family in Statistical Inference
In this paper, after introducing exponential family and a history of work done by researchers in the field of statistics, some applications of this family in statistical inference especially in estimation problem,statistical hypothesis testing and statistical information theory concepts will be discussed.
متن کاملProcrustean statistical inference of deformations
A two step method has been devised for the statistical inference of deformation changes. In the first step of this method and based on Procrustes analysis of deformation tensors, the significance of the change in a time or space series of deformation tensors is statistically analyzed. In the second step significant change(s) in deformations are localized. In other words, they are assigned to ce...
متن کاملInferring the direction of implied motion depends on visual awareness.
Visual awareness of an event, object, or scene is, by essence, an integrated experience, whereby different visual features composing an object (e.g., orientation, color, shape) appear as an unified percept and are processed as a whole. Here, we tested in human observers whether perceptual integration of static motion cues depends on awareness by measuring the capacity to infer the direction of ...
متن کاملA study on the accuracy of motion tracking of thoracic tumors at radiotherapy with external surrogates
Introduction: In radiotherapy with external surrogates, exact information of tumor position is one of the key factors that improves treatment delivery. Many dynamic tumors in thorax region of patient move mainly due to respiration and are known as intra-fractional motion error that must be compensated, as well. One of clinical strategy is using Stereotactic Body Radiation Thera...
متن کاملInvisible Phenomena in the Overall Personality of Man, in the Interpretive Study of the Verses 38 and 39 of Haqqah
There is a visible and invisible element in all creatures. There are also realities in human beings, some of which are visible and most of which are invisible. The preference of the invisible is not limitted only to quantities but includes qualitaties also. This division is inspired by the verses 38 and 39 of Haqqah: Most commentators of the Holy Qur'an believe that the external instances of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012